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Eigenvalues of the Laplacian of a Graph

by

William N, Anderson> Jre

and

Thomas D0 Morley

Let G be a finite undirected graph with no loops or multiple edges.

We define the Laplacian matrix of G, A(G), by A.. s degree of vertix i

and A. . = -1 if there is an edge between vertex i and vertex j» In
•LJ

this paper we relate the structure of the graph G to the eigenvalues of

A(G)j in particular we prove that all the eigenvalues of A(G) are non-

negative, less than or equal to the number of vertices, and less than or

equal to twice the maximum vertex degree „ Precise conditions for equality

are given.



»10 Introduction

Let G be a finite undirected graph with no loops or multiple edges.

We define the Laplacian matrix of G, A(G), by A. . = the degree of

vertex i and A.. = =1 if there is an edge between vertex i and
•*• J

vertex j „ This matrix is discussed by Harary [5]» Our name for A is

chosen because A arises in numerical analysis as a discrete analog of

the Laplacian operator [3]° In this paper we relate the structure of

the graph G to the eigenvalues of A(G)j in particular, we prove that

all the eigenvalues of A are non-negative, less than or equal to the

number of vertices, and less than or equal to twice the maximum vertex

degree „

There is a considerable body of literature relating the eigenvalues

of the adjacency matrix of a graph to its structure [6]j except for

Fisher's paper [2], little seems to be known about the Laplacian»

The authors wish to thank Professor Henry P„ McKean, Jr., for sug-

gesting this studyo

2, Preliminaries

Our basic graph theory reference is Harary [£]o The definitions of A

and E, as well as Lemma 1, are taken from Chapter 13 of Harary„ To de-

fine E, the vertex-edge incidence matrix, we first orient G8 Then

E. . = 1 if edge j points toward vertex i, E. . 3 -1 if edge j points
j- j -i-j

1JS

away from vertex i, and E. . = 0 otherwise. Let E denote the trans-
•*-J

pose of E0



Lemma I, A = EE „

Proof. Two distinct rows of E will have a non-zero entry in the

same column if and only if an edge joins the corresponding verticesj

the corresponding entry will be 1 in one row and -1 in the other,

giving a product of -1.

&
We will also need to consider the matrix N defined by N = E E«

The important property of N is that if ^ is a non-zero eigenvalue of A,

then it is also an eigenvalue of N, and conversely. In fact, if Ax = Ax
iM. JK. J'

with A / o, then NE x = E Ax s AE"x so that A is an eigenvalue of N
J4,

with eigenvector E x. The matrix N of course depends on the choice of

orientation! we will vary the orientation as needed. In particular,

if G is a bipartite graph, we may point all edges toward vertices of

one class. Then all entries of N are non-negatives in fact N - 21 * A,

where A is the adjacency matrix of the line graph of G. Results about

line graphs of bipartite graphs thus translate directly into the present

context [1].

If M is a matrix, let p(M) denote the spectral radius of M0

Let G denote the graph complementary to G0 That is, G has the

same set of vertices as G, and vertices v and w are joined in G if

and only if they are not joined in G0

Let K denote the complete graph on n vertices.



3. The Global Structure of G

In this section we obtain bounds for the eigenvalues of A(G) in

terms of the number of vertices and the number of components of G0

Lemma 2. The eigenvalues of A(K ) are 0, with multiplicity 1,

and n, with multiplicity n~l«

Proofs Let u be the vector with all components equal to 1 g then

A(K )u * 0. If x is any vector orthogonal to u, it may be easily veri

fied that A(K )x - nx. Q.E.D.n

Theorem 1. If the graph G has n vertices, and A is an eigenvalue

of A(G) then 0 < A < n. The multiplicity of 0 equals the number of

components of Gj the multiplicity of n is equal to one less than the

number of components of G.

Proof. Suppose A is an eigenvalue of A . Then for some vector x,
2

with |]xl = 1, Ax = Ax. Thus A = (Ax,x) = (Axsx) = (EE*x,x) - ]JE*x fl .

Therefore A is real and non-negative,,

let the vertices v̂ ,,,0)v.. be the vertices of a connected component

of G| then the sum of the corresponding rows of E is 0, and any K»l

of these rows are independent. Therefore the nullity of E, and thus of

%
EE , is equal to the number of components of G0

If G has n vertices, then A(G) * A(G) = A(Kn). if u is the

vector with all components 1, then A(G)u - A(G)u = A(K )u = 00 If

A(G)x = Ax for some vector x orthogonal to u, then using Lemma 2 we

have A(G)x = A(K )x - A(G)x = (n-A)x. Since the eigenvalues of A(G)

are also non-negative, we must have A 5 n. Moreover A = n if and only



if A(G)x = 0, and the dimension of the space of such vectors is one

less than the nullity of A(G) (since all such x are orthogonal to u) „

QoEoD.

Corollary, If G has n vertices, and X = n is an eigenvalue of

A(G), then G is connectedo

Proofo If G were not connected, then G would be, and by the theo-

rem n could not be an eigenvalue of A(G)0 QJSoD,

Uo The Local Structure of G

In this section we obtain an upper bound for the eigenvalues of A(G)

in terms of vertex degrees„

Before proceeding we need to recall a few facts from the theory of non-

negative matrices! our basic reference is Chapter XIII of Gantmacher [U]o

Briefly, a matrix M is said to be non-negative if M.. > 0 for all i
-i J

and j0 If M is a matrix, denote by M the matrix obtained by replacing

each entry of M by its absolute value. If M is irreducible, and A is. an

eigenvalue of M, then ] \\ < p(M ), with equality if and only if

M = e DM D~ where D = I0 For an irreducible non-negative matrix M,

p(M) .5 the maximum row sum with equality if and only if all row sums are

equal„

Theorem 2, Let G be a graph. Then p(A(G))< Max (deg v + deg w)

where the maximum is taken over all pairs of vertices (v,w) joined by an

edge of G, If G is connected, then equality holds if and only if G is

bipartite and the degree is constant on each class of vertices,



Proof. We will work with the matrix N rather than A .

First consider a connected graph G, then N is irreducible, and

thus p(N) < p(N ) < maximum row sum of N . But if e is an edge of G

joining vertices v and w, then the row sum in the row corresponding

to e is deg v * deg w. The inequality is thus established for connected

graphs.

If G is bipartite, then we may orient G with all edges pointing

toward the vertices in one of the two classes! thus N(G) = N (G). Then

p(N) = max row sum if and only if all row sums are equal? i,e0, if and

only if the condition of the theorem holds. Equivalently, equality holds

if and only if the line graph of G is regular.

If G is not bipartite, then we will show that P(N) < p(N*), so
i<J> * =1

that equality cannot hold in the theorem. In fact, suppose N = e DN D 0

ict> =,1 i<J>
Then since N.. = 2, we have 2 = e °D..»2«D.. , so that e = 10 Now

suppose that the edges 1, ,.0>K form an odd cycle (if no odd cycle exists,

then G is bipartite )j we may orient G so that the corresponding entries

of N are -10 Then N12 = -1 =
 D-n°loD22 > so that D22 = " Dll ' con"

tinuing around the cycle we have D = - D.. , contradicting the require-

ment that D = I0 Therefore, if G is not bipartite, equality cannot hold

in the theorem.

If G is not connected, the inequality, and the corresponding equality

statement, follow by applying the theorem to each component separately,,



Corollary, Let G be a connected graph. Then p(A(G)) < twice the

maximum vertex degree with equality if and only if G is a regular bi-

partite graph.

Proof. This is a special case of the theorem Q,E.D.

5., Explicit Computations

Theorems 1 and 2 were conjectured from explicit computations with

eigenvalues? many of these were done on a digital computer. Some of these

results are stated belowj the reader may verify them without difficulty.

If G is the complete bipartite graph K , then the eigenvaluesm^n

of A(G) are m+n, m, n, 0 with respective multiplicities 1, n-1,

m-1, 1.

If G is the cycle with n vertices, then the eigenvalues of A(G)
9 wV

are Usin — , K = l,2,0.0>n.

If G is the path with n vertices, the eigenvalues of A(G) are
O TfV

Usin ^-r , K = 0,1, „ . ,,n-l,

If G is the wheel with n*l vertices, the eigenvalues of

are n*l, 1, and 1 * Usin — , K = 1,2, .00,n-l.
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